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Abstract: Cable and membrane structures are typically geometrically flexible and are subject to larger 
deflections under loads when compared to geometrically rigid structures. As one of the well-known types 
of cable roofs, the preliminary design of cable domes requires assigning appropriate prestress to the cables 
and structs taking into account the strength, stability and serviceability requirements under different load 
conditions according to design codes. The ideal prestress is assigned initially based on the geometrical 
arrangements of cables and struts, then magnified according to the load carrying capacity of the dome. The 
arrangement of cables and struts can affect the ideal prestress and, eventually, the total weight and 
maximum displacement of the dome under service loads. In this regard, this study performs a parametric 
study to investigate the sensitivity of some geometrical parameters (radial divisions and number of sectors) 
to the maximum displacement and total weight of a cable dome of Geiger-type. A code was developed to 
determine the initial prestress of 12 domes (with configurations of 2 hoops and 10 sectors up to 4 hoops 
and 20 sectors) then further modeled using SAP2000 and subjected to service loads according to the NBCC 
code. The results of this study showed that the total weight and maximum displacement remain relatively 
constant when increasing the number of sectors. On the other hand, increasing the number of hoops leads 
to significantly less displacement and a heavier dome. Based on these results, it can be concluded that 
domes with a larger number of hoops perform better under external loading, but resultantly are heavier and 
therefore more expensive.  

Keywords: parametric study, Geiger cable dome, ideal prestress  

1    INTRODUCTION 

Cable structures are incorporated in the design of long span buildings due to their lightweight and versatile 
nature and can be classified into three categories (Quagliaroli et al., 2015). The first is the pure tensile 
structure, in which one set of cables provides support while the other is for stabilization. The second is the 
tensegrity structure; a combination of both cables and struts that are self-equilibrated through prestressing 
and do not require the stiffness provided by supports. The third category of cable structures is the hybrid 
tensile structure, which is considered a tensegrity structure, but with perimeter support (Quagliaroli et al., 
2015). Cable domes, as a hybrid tensile structure, attain their stability by assigning the appropriate level of 
prestress. Meanwhile, the initial geometry can affect greatly the prestress distribution and, consequently, 
the static behavior of cable domes under external loads. This phenomenon was touched on in some past 
studies, such as, Kawaguchi (1999) who studied the effects of changing the length of the outer-most post 
and found that increasing the length would decrease the vertical displacement of cable domes. Also, 
Quagliaroli et al. (2015), Yuan and Dong (2002), and Pollini (2021) investigated effects of the member ’s 
weight on the dome feasibility and determined the optimal weight for a feasible design. Castro and Levy 
(1992) found that increasing the strut height ultimately minimized the cost of the Georgia Olympic Dome, 
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and that a two-hoop dome was more economical than a three-hoop one. Fu (2005) determined that a 
wedge-shaped cable network resulted in a lighter weight structure than a triangulated network as there was 
a smaller number of cable elements. Krishnan (2015) investigated the effects of the number polygon sides 
on torsional stiffness and found that domes with fewer sides were prone to torsional distortion. Based on 
the above and due to the growing demand in the market on this type of light-weight roofing, more research 
is required to cover further aspects in this domain. 

The objective of the current research is to determine the optimal member arrangement for the design of 
long-span cable dome structures to the minimum weight and displacement. In this regard, this paper 
investigates the results of twelve cable dome models, each with different numbers of sectors and hoop 
cables and is subjected to various load combinations. The paper is organized as follows. Section 2 includes 
the design of positive curvature cables domes by, first, determining prestresses using the Singular Value 
Decomposition method, then, calculating the required cross-sectional areas under different load conditions 
according to the NBCC code. Twelve study cases are presented. Section 3 presents and discusses the 
results of the numerical model. Finally, Section 4 concludes the results. 

2    DESIGN PROCEDURE OF A CABLE DOME OF GEIGER TYPE 

2.1 Calculating Prestress of Cable Domes Using Singular Value Decomposition 

The fundamental contributions of matrix analysis of pin-jointed tensegrities using the Singular-Value 
Decomposition (SVD) method are due to the work done by Pellegrino (1993). This method is based on 
calculating the connectivity matrix of the dome as illustrated in Tran et al. (2012), then calculating the 
projected lengths of all members in the x-, y-, and z- directions as follows, 

[1] 𝑙𝑥 = 𝐶𝑥 + 𝐶𝑓𝑥𝑓                                                                                      

[2] 𝑙𝑦 = 𝐶𝑦 + 𝐶𝑓𝑦                                                                                      

[3] 𝑙𝑧 = 𝐶𝑧 + 𝐶𝑓𝑧𝑓                                                                                       

Where (x, y, z) and (xf, yf, zf) are the nodal coordinates for the free and fixed nodes in x, y, z directions, 
respectively. C and Cf describe the connectivity of the members to the free and fixed nodes, respectively. 
The members lengths are then calculated using,  

[4] 𝑙 = √𝑙𝑥2 + 𝑙𝑦2 + 𝑙𝑧2                                                              

The equilibrium matrix A can be formed using the project lengths as defined by, 

[5] 𝐴 = (

𝐶𝑇𝑑𝑖𝑎𝑔(𝑙𝑥)

𝐶𝑇𝑑𝑖𝑎𝑔(𝑙𝑦)

𝐶𝑇𝑑𝑖𝑎𝑔(𝑙𝑧)

) 𝐿−1                                                                  

Where L is diagonal l. By applying the SVD technique on the equilibrium matrix, the vector of prestress of 
all members can be retrieved. The unilateral conditions of all members, i.e., struts are under compression 
and cables under tension, should be checked, otherwise, the geometry should be changed. A code was 
developed using MATLAB that reads the connectivity matrix of the dome, constructs the equilibrium matrix, 
and performs SVD technique to determine prestresses for all domes.  

The prestress of one of the elements in the inner ring of the dome is scaled to 1, then the prestresses of all 

other elements are proportionally scaled up by the same ratio. Those values are then magnified to 108 N 
which achieves the minimum displacement of the dome under external loads.  

2.2 Load Cases 

Krishnan (2015) examined the various loads and load combinations that cable domes are designed to 
withstand. These loads include prestressing forces, dead and live loads, snow loads, and wind loads, which 
are included in the design of twelve cable domes. Prestressing forces are necessary to ensure that all 
cables remain in tension and that the deflections are within the designated limits. Prestressing loads depend 
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on the geometry, member size and deflection limits of the structure. The dead loads, live loads, snow loads, 
and wind loads are applied at the upper joints based on the tributary area each node supports.  
 

Loads considered:  

1) live load L=1.0 𝑘𝑁/𝑚2 

2) snow load S=0.85 𝑘𝑁/𝑚2 

3) wind load W=0.9 𝑘𝑁/𝑚2 in suction 
4) prestress load St 

Load combinations: 

The dome models are subject to load combinations from Table 4.1.3.2.-A of the National Building Code of 
Canada as presented in Table 1, with the addition of the prestress load to each combination. The allowable 
stress was taken as 30% of critical tensile strength for cables, and 60% of critical compressive strength for 

the struts (Wang et al. 2010). The critical strength of cables and struts are 𝜎𝑐 = 1.67 × 106 𝑘𝑁/𝑚2 and 𝜎𝑠 =
3.45 × 105 𝑘𝑁/𝑚2, respectively and the Young’s Modulus for cables and struts are 𝐸𝑐 = 1.9 × 108 𝑘𝑁/𝑚2 

and 𝐸𝑠 = 2.06 × 108 𝑘𝑁/𝑚2, respectively. 

 

 

 

 

 

 

2.3 Study Cases 

Twelve cable domes are considered in the current study. The domes range from two hoops and ten sectors 
(2H10S) to four hoops and twenty sectors (4H20S), as shown in Figure 1 to 12. The prestresses for the 
domes are first determined using a code developed in MATLAB based on SVD method as outlined in 
Section 2.1. All domes were then designed using the commercial software SAP2000 according to the 
envelope of all load combinations outlined in section 2.2. 

 

 

 

 

 

 

 

Table 1: Load Combinations from NBCC 

Case Principal Loads Companion Loads 

1 1.4D+St - 

2 (1.25D or 0.9D)+1.5L+St 1.0S or 0.4W 

3 (1.25D or 0.9D)+1.5S+St 1.0L or 0.4W 

4 (1.25D or 0.9D)+1.4W+St 0.5L or 0.5S 

Figure 1: 2 Hoops 10 Sectors 
 

Figure 2: 2 Hoops 12 Sectors 
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Figure 7: 4 Hoops 10 Sectors 

 

 

 
Figure 9: 4 Hoops 14 Sectors 

 
Figure 3: 2 Hoops 14 Sectors 

 

 
Figure 4: 2 Hoops 16 Sectors 

 
Figure 5: 2 Hoops 18 Sectors 

 
Figure 6: 2 Hoops 20 Sectors 

 
Figure 8: 4 Hoops 12 Sectors 

 
Figure 10: 4 Hoops 16 Sectors 
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3    RESULTS AND DISCUSSION 

3.1 Prestress Results 

As the first step in designing cable domes, the feasible prestress of all members should be determined 
before external loads can be applied and then magnified according to the load carrying capacity of the 
domes. Table 2 and 3 compare the prestresses of all groups of members in models with 2 hoops and 4 
hoops, respectively. This comparison showed that the prestress distribution in the hoop cables doesn’t 
change significantly when changing the number of sectors. However, the prestresses in both diagonal, 
ridge cables decrease with the increase in the number of sectors. For example, the prestress for the HS0 
cable in two hoops and ten sectors (2H10S) is 1.37778 and for two hoops and twenty sectors (2H20S), the 
prestress is 1.375. Figure 13 and 14 illustrate the geometry and group members of cable domes with two 
and four hoops, respectively. Contrary to this, the number of hoops does affect the prestress distribution. 
For example, HS0 cable in two hoops and fourteen sectors (2H14S) dome has a prestress of 1.37805 while 
the same cable in four hoops and fourteen sectors (4H14S) has a prestress of 0.25993.  

3.2 Total Weight Results 

By comparing the total weight from all models, it can be seen that the weight is almost the same for all 
models with the same number of hoop cables as shown in Figure 15 and tabulated in Table 14. This 
equivalency is due to the fact that increasing the number of sectors decreases the tributary area each node 
supports, and this decreases the cross-sectional areas of the elements in each sector. As a result, the total 
weight of the dome remains almost the same when increasing the number of sectors keeping the number 
of hoops unchanged. In other words, the increased number of sectors balances the decreased values of 
cross-sectional areas. For example, the total weight of the dome with four hoops and ten sectors (4H10S) 
is 11800.73 KN, meanwhile the dome with four hoops and twenty sectors (4H20S) weighs 12358.71 KN. 
Although they differ significantly in the number of members, they have very similar total weights. 

3.3 Total Displacement Results 

By comparing the total displacement of all domes, the number of hoop cables has the greatest effect on 
the total displacement as shown in Table 4 and Figure 16. As the number of hoops increases, the total 
weight increases, while the maximum displacement decreases. This can be interpreted as that the dome 
becomes stiffer when increasing the number of hoops, which confines the domes. For example, the max 
displacement for the dome with two hoops and sectors sectors (2H14S) is 0.028921 m, while the dome 
with four hoops and fourteen sectors (4H14S) undergoes a max displacement of 0.005015 m. Although 
both domes have the same number of sectors, the dome with four hoops has a significantly smaller max 
displacement. On the other hand, the number of sectors does not affect greatly the max displacement. As 
shown in Table 4, four hoops and ten sectors (4H10S) dome has a maximum displacement of 0.005232m, 
while the dome with four hoops and twenty sectors (4H20S) has a maximum displacement of 0.005624m. 
Although the number of sectors has changed, the maximum displacement remained nearly constant.   

 
 
 
 
 
 

 
 

Figure 11: 4 Hoops 18 Sectors 

 
 
 
 
 
 
 
 

 

 
Figure 12: 4 Hoops 20 Sectors 
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3.4 Effect of Outermost Struts’ Length 

When comparing the length of outermost struts of both domes, shown in Figure 13 and 14, it is obvious that 
the outermost struts in the domes with two hoops are relatively short compared to vertical elevation of 
supports. Therefore, the diagonal cables are carrying excessive stresses and have higher prestresses 
compared to the ridge cables. To illustrate further, the diagonal cable XS2 in the dome with two hoops and 
ten sectors has a prestress of 18.4222, whereas the ridge cable JS2 has a prestress of only 1.54444, as 
shown in Table 2. As a result, cable XS2 is carrying much of the load and, accordingly, must have a larger 
cross section than if the outer post dropped lower. On the same line, increasing the length of the outer-
most struts can redistribute the forces among the diagonal cables, ridge cables and the outermost struts. 
This reflects the sensitivity of this type of structures to the geometry configuration, in general, and the length 
of struts, in particular. The effects of the lengths of the outermost struts were investigated by Kawaguchi et 
al. (1999), where they illustrated that increasing the lengths of the outermost struts can decrease the vertical 
displacement by 25-35%.  
 

Figure 13: Model Geometry for 2 Hoops 

Figure 14: Model Geometry for 4 Hoops 

 

Figure 16: Model Maximum Displacement 

 
Figure 15: Model Total Weights 
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Table 2: Prestress Modes for 2 Hoops 

Member 10S 12S 14S 16S 18S 20S 

HS0P 1 1 1 1 1 1 

HS0 1.37778 1.38372 1.37805 1.38462 1.37333 1.375 

HS1 29.8111 29.7326 29.7073 29.7949 29.6267 29.5833 

JS1 0.62222 0.52326 0.45122 0.39744 0.34667 0.31944 

JS2 1.54444 1.2907 1.10976 0.97436 0.86667 0.77778 

XS1 0.85556 0.72093 0.60976 0.53846 0.48 0.43056 

XS2 18.4222 15.3953 13.2195 11.6282 10.2933 9.26389 

G0 -0.07778 -0.06977 -0.06098 -0.05128 -0.04 -0.04167 

G1 -0.46667 -0.39535 -0.32927 -0.29487 -0.26667 -0.23611 

 

Table 3: Prestress Modes for 4 Hoops 

Member 10S 12S 14S 16S 18S 20S 

HS0P 1 1 1 1 1 1 

HS0 0.26003 0.26094 0.25993 0.25976 0.26003 0.26079 

HS1 0.60193 0.6013 0.60265 0.60272 0.60209 0.60252 

HS2 1.39647 1.39546 1.39735 1.39728 1.39616 1.39748 

HS3 3.08026 3.07942 3.08278 3.08149 3.07853 3.08094 

JS1 0.61958 0.51864 0.44702 0.39219 0.34904 0.31475 

JS2 0.78973 0.66126 0.56954 0.49915 0.44328 0.39928 

JS3 1.19101 0.99676 0.85762 0.75212 0.66841 0.60252 

JS4 2.14607 1.79579 1.54636 1.35484 1.20593 1.08633 

XS1 0.16854 0.141 0.12252 0.10696 0.09424 0.08633 

XS2 0.39647 0.33063 0.28477 0.24958 0.22164 0.19964 

XS3 0.91653 0.76661 0.6606 0.57895 0.51483 0.46403 

XS4 2.04173 1.70989 1.47185 1.29032 1.1466 1.03417 

G0 -0.05136 -0.04214 -0.03642 -0.03226 -0.02792 -0.02518 

G1 -0.13483 -0.11183 -0.09603 -0.08489 -0.07504 -0.06835 

G2 -0.30658 -0.2577 -0.22185 -0.19355 -0.17277 -0.15468 

G3 -0.73997 -0.61912 -0.53311 -0.46689 -0.41536 -0.3741 

 

Table 4: Model Total Weights and Maximum  

Model 
Weight 
(KN) 

Max. Disp. 
(m) Model 

Weight 
(KN) 

Max. Disp. 
(m) 

2H10S 7775.255 0.028975 4H10S 11800.73 0.005232 

2H12S 7876.44 0.030687 4H12S 11358.88 0.003917 

2H14S 5609.393 0.028921 4H14S 11772.08 0.005104 

2H16S 5930.314 0.030327 4H16S 11659.94 0.005427 

2H18S 5977.006 0.029123 4H18S 12130.15 0.005634 

2H20S 5616.371 0.029741 4H20S 12358.71 0.005624 
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4    CONCLUSION 

This paper investigated the effects of the number of hoops and sectors on the total weight and maximum 
displacement of long span cable dome structures. Twelve domes were designed under different load 
combinations and compared in terms of the max displacement, total weight and prestress distribution. By 
analyzing the results, it can be concluded that changing the number of sectors has the least effect on the 
total weight and the maximum displacement of the dome, rather, increasing the number of hoops stiffens 
the structure by decreasing the total displacement, despite the increase in weight. Moreover, the behavior 
of the dome is highly affected by the length of struts, especially when the outermost struts are relatively 
short compared to the vertical elevation of supports, leading to excessive stresses in the diagonal cables 
compared to the ridge cables. This reflects the sensitivity of this type of structures to the geometry 
configuration, in general, and the length of struts, in particular. 
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