University of Massachusetts Amherst

<u>Design of a Reinforced Concrete Beam in a</u> <u>Continuous Frame</u>

CEE 433 - Spring 2021

05/08/2021

Chinyere Ogala

Introduction:

We were tasked with designing a second floor beam of the frame on line C for a five story building. We were to design the beam's dimensions, number and arrangement of longitudinal bars, bar sizes, cutoff locations, and stirrup locations.

Procedure:

Loads were calculated dead, wind, and live for the second story frame. The building frame was then made into **SAP 2000** to be analyzed. Shear and moment diagrams were made with load combinations. The reinforcement was then designed based on the maximum moment found in the moment diagrams. The stirrups were designed based off of the shear diagram that was made in sap. The longitudinal cutoffs were made for the reinforcement and the area of steel. It was assumed for longitudinal bars;

$$l_d = \frac{f_y}{\lambda \sqrt{f'_c}} \cdot \frac{\psi_t \cdot \psi_e}{20} d_b$$
 with ψ_e and $\lambda = 1.0$

The capacity of the bars were checked to see if the selected bars chosen did not exceed the maximum capacity of the bars used in design.Lastly the beam is drawn to show the designs that we have made.

The figures below show the structural system of a reinforced concrete office building. Each frame in the building along lines A through F support the tributary gravity loads generated on the one-way slab of the building in addition to the wind load acting in the east- west direction on the side of the building

Building Elevation

Calculations:

<u>The reinforcement at different sections along the</u> <u>second floor beam for the critical moments computed from</u> <u>analysis (positive and negative)</u>

Load calculations:

Self weight: (SAP2000, will calculate the self weight) Super imposed: 151b x Tributary width $\frac{151b}{ft^2} \times 14ft \times \frac{1kip}{10001b} = 0.21 kip/Ft$ Typical Floor Live load: 65 b x 14 ft x 1 kip = 0.91 kip/ft $\frac{201b}{Pt^2} \times 14ft \times \frac{11}{10001b} = 0.28 \text{ kiP/ft}$ Wind Load: Wind load For Roof: 3216 x tributory Area $\frac{32 \text{ lb}}{\text{R12}} \times 14 \text{R1} \times 6 \text{R1} \times \frac{1 \text{kip}}{1000 \text{ lb}} = 2.69 \text{ kip}$ Wind load for 1st floor: $32.1b \times Hfl (6+7)fl \times \frac{1kip}{10001b} = [5.82kip]$ Wind load For floor: $321b \times 14ft \times 12ft \times \frac{1kip}{100016} = 5.38 kip$ $(2^{nd} - 4^{th})$

-	CIC-BODD
	A C- SOCODEL ME-O.ALVIDER 13=10
-	ty= 600 00psi Wp=0.77 Kiplet N= 20
	WR=0.28Kplft
	NW = 5.38 Kip/ft (22 floor)
Lia	Selv weight = 18"x30'x15016/r+3x1 = 562,516/ft
	144
10	
	$W_{p} = 0.562 \text{ K/ } + 10.21 \text{ K/ } + 1.542$
	Wu=1,20+1.0W+1.0L+0.5Lr=7.35kip4pt
L	
	$M_{1} = W_{1}^{2} = 7.354 \text{ k/c} + x36^{2} - 1191.35 \text{ kip} - 47$
	The state of the s
	MALL & DOMIN
	M. a. MALZE ID: 11 1588/160/160.00
	1010, reg = 11 11.35 ×1210107 - 13004104 ×10111
	0.9
	Imax = (0.85¢ c) 3/ B1 = 0.0212
	4.9
	0.704 max = 0.0149
	$R_n = Pru(1 - 0.5Pm) = 0.0149 \times 6010000000000000000000000000000000000$
	0490 019 (14.12 9
	$m = r_{11} = 60 = 14.12$
	DSECH DISSIE
	Kn=U'tyThol
	bd= My = 260.6×1211/Ft = 4448.8710=
	dRn 0.9x0.79d
	USE MU= - 266.6 KIP-Ft
N. Contraction	

Nc 182.42 Kip-ft Mc 182.42 Kip-ft ML - 239.27 Kip-ft From SAP 2000 4" 9 ×20 USE 21.09 "-1.5+3/8-0.5 0 19:25 d= 17.5" 7.8 14 Adjusted Moment F=1.01 6 6.6 Use R = Mx12in/ct 1 1 1 1 1 0 9×14"×17.52 9 = 1 1-2mRn' m AS=gxbxd USe 0 Adjusted M R Alin 241.60 0.75 3.43 0.014 2+19+2+18 134.75 0.42 C 0.0074 11.8 2 269.27 R 0.84 0.016 3.85 5# 8 = 3.95 in2 5#8 2.5 00 000 1.0 249 20 248 240 97 1.5 X 14/1 14" 1411 Right Centre left

<u>The shear reinforcement (stirrups) needed along the span</u> of the beams (second floors)

$$\begin{aligned} q_{14} &= 1.2D + 1.6L \\ Dead load for revised beam (self weight) \\ &\frac{(20'')(H'')}{144 in/g_2} (150 \frac{116}{PH^3}) \cdot (\frac{1160}{100000}) = 0.29 \text{ kip/ff} \\ Superimpose Load: 0.21 \text{ kip/ff} \\ total dead load = self weight + superimposed \\ &= 0.29 + 0.21 \\ &= 0.502 \text{ kip/ff} \\ q_{14} = 1.2 (0.502 \frac{\text{kip}}{\text{ff}}) + 1.6 (0.91) = 2.0584 \\ \text{Nu} A &= \frac{1}{2} q_{14} L = \frac{1}{2} (2.0584) (36) = 37 \text{ kip} \end{aligned}$$

 $V_{UB} = \frac{1}{2} q_{U_{L}} l = \frac{1}{8} (1.6 \times 0.91)(36) = 6.56 \text{ kip}$

ΦVn≥ Vu

$$\Phi V_n = \phi (V_c + V_s)$$

if Av, min is provided:

According to Acl 318-19: $Vc = 2 \lambda \ \overline{fc} \ bwd = 2 \ (1) \ \overline{5000} \ (14'' \times 17.5'') \ 1000}$ $Vc = 8 \lambda \ (pw)^{b} \ \overline{fc} \ bwd = 34.65 \ kip$ $Vc = 34.65 \ kip$ $\Phi vc = 0.75 \ (34.65 \ kip)$ $\Phi vc = 25.98 \ kip$

$$QV_{S} = V_{U} - QV_{c}$$

 $QV_{S} = V_{U} - 25.9 \ 8 \ kip$
 $Slope = \frac{V_{U}A - V_{U}B}{L_{2}} = \frac{37 - 6.56}{18 \ PH} = 1.69 \ kip/PH$

 $V_{uoloce} = 37^{k} - 1.69 \frac{k}{4} \left(\frac{12''}{12'} \right) = 35.31 k$

Let's check if it satisfy the requirement:

$$V_{u} \leqslant \Phi \left(V_{c} + 8 \sqrt{f'_{c}} b_{w} d \right)$$

$$0.75 \left(34.65^{1/2} + 8 \sqrt{5000} \left(\frac{14^{'} \times 17.5''}{1000} \right) \right)$$

$$= 130 \text{ kip}$$

$$35.31^{k} \leqslant 130 \text{ k}$$

- Table 9.7.6.2.2 Maximum spacing of legs of shear reinforcement. ACI 3(8-19
 - if $V_s \leq 4\sqrt{\frac{3}{2}} \text{ bwd} \implies \text{Smax} = \frac{d}{2}$; otherwise d/4 $V_{s=12.44k}$ $4\sqrt{5000} \frac{(4^{"} \times 17.5)}{1000} = 69.3$

Minimum Transverse reinforcement requirements

if
$$V_{4} \ge 0 \lambda \sqrt{f_{c}}$$
 bud
 $0 \lambda \sqrt{f_{c}}$ bud $= 0.75 (1.0) \sqrt{5000} \frac{(14^{W} \times 17.5)}{1000}$
 $0 \lambda \sqrt{f_{c}}$ bud $= 12.99$
 $V_{4} = 37.0 kip$
Then, $V_{4} \ge 0.75 (1.0) \sqrt{5000} \frac{(14^{W} \times 17.5)}{1000}$

$$\frac{Av_{,\min}}{s} = 50 \frac{bw}{fy} = \frac{50 (14)}{60,000} = 0.010 in^{2}/in$$

$$\frac{Av_{,\min}}{s} = 0.75 \frac{Fc}{fy} = 0.75 \frac{5000}{60,000} 14'' = 0.012 in^{2}/in$$

OY

Stirrup Contribution (Vs)

$$\Phi V_{s,req} = V_u - \Phi V_c$$

10		(ICIA)	(leip)	(in)	(in)
12	35.31	9.33	12.44	18,57 in	d/2
36	31.93	5.95	7.93	29 in	d/2
72	26.86	0.88	1.173	196	d_{12}
1 1 1	l i	i i			1 1 3
216					

$$S = 2(0.11in)(60ksi)(17.5)$$

12.44

	and No. 9 Bars
	Capacity of Beam with Selected Nog
	Burs
	AS = 2H 9 = 2.52in
	$q = 45 \cdot \omega$ $0.55 \times 10^{-10} = 0.85 \times 4 \times 14$
	$M_{n} = As \cdot 4y \cdot (d - \frac{q}{2}) = 2in^{2} \times 60KSi(20 - \frac{q}{2})(12)$
	Mn=187.5/10-2t
3	\$Mn= 0.9×(187.5)kip-1t= 168.40 Mp=1
A STATE	1 house NO, 8 and NO.9 bows
	Development lengering ise than the 1.026 minimum
	converte de Assume minimum stirrups are present
	throughout development length
1.15	Id=fy . It. re do with the condition
	For ND.9 battom bar:
60	12 = 54 - 40 = 60000 . 1 (1.128) = 53.4in
all	12 20 (4000 20 <u>54</u> in
Sec. 1	
	tor NU. + 60000 . 13(1128) - 69.5610
	101 20 (4000 20 MAOIN
1 min	
	For NO. 8 bottom bars
	4=54 -1 do = 60000 .1 (1)= 4-1.411= 48/11
	JFC 20 4000
-	For NO S. LOP bars
- 1963	10=44. 1 db = 60000 . 1.3 (1)= 61.610
	JFT 20 (TADOO 20 2621)

G	Check the sharebut tor ANO9 + 2NO8
	(- 0, 25 d' (bo = 0.85(5)(14) a= 59.59
	- 1-1-2 E81 615- 214. X K-Ft
	1 = Hoty = 3'00x 00 - 21' 0 " f
	Cl = 1 = 3.61 m
)	9 Mn=0.9(214.8)(17.5-2)12 - 2.012
)	Ma= 252.85 = 280.94 Kip-ft
)	0.9
•	ØMn=252.85 > Mu=241.00 Kip=ti
Ð	KIP-FF FOR 2NO 9
9	$C = 0.85 r^{1} c ba = 0.85(5)(14) a = 59.34$
9	T = Asa = 120 sip-st
1	a = T - 2.02
	C
-	OMn = 148.41 Kip-ft
	0 Mn = 0.9(120) (17:5-2)= 148.41 Kip-ft
-	$M_n = 164.9 kip - ft$
	0Mn=148.41Kip-ft>MU=134.75Kip-ft
-	1
-0	For 5 + 8 = 3.85 m2
	C = 0.85 f' c b a = 59.5 a
	T= ASEY = 3.85×60 = 231 K-ft
-(9	a=T= 3.8810
	0Mn = 269, 67Kip-ft > 269.2+ Kip-ft (Mu)
	· · · · · · · · · · · · · · · · · · ·

Check category Spase = 2(1.128) H9Bars + 2(1.5) + 2(1) cover ++8 128 Bar spaang =11. 768 (category A 411 m 1.5 1.128

<u>Results:</u> <u>Moment Diagram</u>

Shear Diagram

Longitudinal Bar With Moments

Design Drawings

Beam Cross Section	<u>Height</u>	<u>Depth</u>	<u>Width</u>
	20"	17.5"	14"
	<u>Left</u>	<u>Center</u>	<u>Right</u>
M(Kips-ft)	241.6	134.75	269.27
NO.OF BARS	2#9, 2#8	2#9	5#8
As(in^2)	3.58	2.0	3.95

	<u>S</u> 1	<u>S</u> 2	<u>S</u> ₃
Stirrups	4"	6"	7"
Number of	10	20	7

Longitudinal Bars	<u>Top</u>	<u>Bottom</u>
#9	70"	54"
#8	62"	48"

Discussion of Errors:

For the stirrups some problems were encountered when calculating the spacing. The spacing exceeded the maximum spacing allowed for every point selected (ACI 318-19 Table 9.7.6.2.2). It is assumed that the Vu calculated is too low to reduce the spacing. Therefore, the exact spacing for stirrups are not calculated due to having low value of Vu.